New invariant measures to track slow parameter drifts in fast dynamical systems
نویسندگان
چکیده
Estimates of quantitative characteristics of nonlinear dynamics, e.g., correlation dimension or Lyapunov exponents, require long time series and are sensitive to noise. Other measures (e.g., phase space warping or sensitivity vector fields) are relatively difficult to implement and computationally intensive. In this paper, we propose a new class of features based on Birkhoff Ergodic Theorem, which are fast and easy to calculate. They are robust to noise and do not require large data or computational resources. Application of these metrics in conjunction with the smooth orthogonal decomposition to identify/track slowly changing parameters in nonlinear dynamical systems is demonstrated using both synthetic and experimental data.
منابع مشابه
Rigorous Enclosures of Slow Manifolds
Slow-fast dynamical systems have two time scales and an explicit parameter representing the ratio of these time scales. Locally invariant slow manifolds along which motion occurs on the slow time scale are a prominent feature of slow-fast systems. This paper introduces a rigorous numerical method to compute enclosures of the slow manifold of a slow-fast system with one fast and two slow variabl...
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملCanard cycles in Global Dynamics
Fast-slow systems are studied usually by “geometrical dissection” [4]. The fast dynamics exhibit attractors which may bifurcate under the influence of the slow dynamics which is seen as a parameter of the fast dynamics. A generic solution comes close to a connected component of the stable invariant sets of the fast dynamics. As the slow dynamics evolves, this attractor may lose its stability an...
متن کاملA Bayesian Approach to Efficient Diagnosis of Incipient Faults
Safe, reliable, and efficient operation of complex dynamical systems requires the ability to detect, isolate, and identify degradation in system components. Degradations are typically modeled as incipient faults, which are slow drifts in system parameters over time. This paper presents an efficient approach for the detection, isolation, and identification of incipient faults under uncertainty u...
متن کاملRobust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties
In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...
متن کامل